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Abstract

Although workstation clusters are a common platform for high-performance computing
(HPC), they remain more difficult to manage than sequential systems or even symmetric mul-
tiprocessors. Furthermore, as cluster sizes increase, the quality of the resource-management
subsystem—essentially, all of the code that runs on a cluster other than the applications—
increasingly impacts application efficiency. In this paper, we present STORM, a resource-
management framework designed for scalability and performance. The key innovation behind
STORM is a software architecture that enables resource management to exploit low-level network
features. As a result of this HPC-application-like design, STORM is orders of magnitude faster
than the best reported results in the literature on two sample resource-management functions:
job launching and process scheduling.

1 Introduction

Workstation clusters are steadily increasing in both size and popularity. Although cluster hardware is
improving in terms of price and performance, cluster usability remains poor. Ideally, a large cluster
should be as easy to develop for, use, and manage as a desktop computer. In practice, this is not
the case. Table 1 contrasts desktops and clusters in terms of a few usability characteristics. In all of
the cases listed desktop systems are easier to use than clusters. None of the cluster’s shortcomings,
however, are inherent: they are an artifact of deficient resource management software.

The reason that resource management software tends to perform inefficiently is that it has not
previously been important to make it efficient. On a moderate-sized cluster, inefficient, nonscalable
resource-management algorithms have little impact on overall cluster performance, so it is reason-
able to divert more attention to application performance. However, with cluster sizes soon to reach
10,000 processors, resource management can no longer be ignored. Even a small amount of wasted
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Table 1: Desktop vs. cluster usability

Characteristic Desktop Cluster

Mean time between user-visible fail-
ures

Years Days (for a large cluster) down to
hours (for a very large cluster)

Scheduling Timeshared Batch queued or gang scheduled
with large quanta (seconds to min-
utes)

Job-launching speed < 1 second Arbitrarily long (batch, including
queue waiting time) or many sec-
onds (gang scheduled)

wall-clock time translates to a significant amount of wasted total CPU time. Furthermore, the per-
formance lost to slow or nonscalable resource-management functions must be amortized by calling
them as infrequently as possible. This degrades response time and hinders interactive jobs.

Our grand goal is for clusters to be as convenient to use as an individual workstation. In order to
achieve this goal we set out to improve resource-management performance by several orders of mag-
nitude over the current state of the art. Our vehicle for experimentation is a resource-management
framework we developed called STORM (Scalable TOol for Resource Management). Section 2 of this
paper describes the STORM architecture in detail and shows the division of labor among the vari-
ous components. Essentially, STORM’s uniqueness involves defining all resource-management func-
tions in terms of a small set of mechanisms. By optimizing these mechanisms for a given cluster—in
much the same way that one would optimize a high-performance application—STORM can achieve
an immense performance and scalability benefit. Section 3 investigates this performance and scal-
ability benefit in terms of two resource-management routines that were implemented within the
STORM framework: job launching and gang scheduling. We discuss the implications of STORM’s
architecture and performance in Section 4. In Section 5, we compare STORM to related resource
management systems. Finally, we draw some conclusions in Section 6.

2 STORM Architecture

This section describes the architecture of STORM. The most important design goals for STORM
were (1) to provide resource-management mechanisms that are scalable, high-performance, and
lightweight; and, (2) to support the implementation of most current and future job scheduling algo-
rithms.

To fulfill the first goal we defined a small set of mechanisms upon which we based all of the
resource-management functionality. Then, by optimizing just those mechanisms, we improved the
performance and scalability of the rest of the system. For the second goal we implemented some
loosely-coupled dæmons that divide up the tasks of managing a cluster, a node within a cluster, and
a process within a node. By structuring these dæmons in a modular fashion, different functionality
(e.g., coordinated process-scheduling algorithms, fault tolerance, or usage policies) can be “plugged”
into them.
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Table 2: STORM dæmons
Dæmon Distribution Location

MM (Machine Manager) One per cluster Management node
NM (Node Manager) One per compute node Compute nodes
PL (Program Launcher) One per potential process (# of compute nodes ×

# of processors per node × desired level of multi-
programming)

Compute nodes

2.1 Process Structure

STORM consists of three types of dæmons that handle job launching, scheduling, and monitoring:
the Machine Manager (MM), the Node Manager (NM), and the Program Launcher (PL). Table 2 de-
scribes the distribution and location of each of these.

The MM is in charge of resource allocation for jobs, including both space and time resources.
Whenever a new job arrives, the MM enqueues it and attempts to allocate processors to it using a
buddy tree algorithm [11, 12]. Global process-scheduling decisions are made by the MM. NMs are
responsible for managing resources on a single node (which is typically an SMP). NMs are involved
in finding available PLs for a job launch, receiving files transfered by the MM, scheduling and de-
scheduling local processes, and detecting PL process termination. A PL has the relatively simple
task of launching an individual application process. When its application process terminates, the PL
notifies its NM.

2.2 STORM Mechanisms

For software-engineering purposes we partitioned STORM’s code into three layers (Figure 1). The
top layer is a set of functions that implement various resource-management functions. These are
based on a small set of mechanisms which are portrayed as the middle layer. The idea is that if these
middle-layer mechanisms are implemented in a scalable, efficient manner, then the top-layer func-
tions will automatically inherit this scalability and efficiency. The middle-layer mechanisms are im-
plemented directly atop whatever primitives are provided by the underlying network in the bottom
layer. (In our initial implementation, this is the Quadrics network1, (QsNET) [31].) The performance
of the middle-layer mechanisms is a function not only of the bottom-layer primitives’ performance,
but also of how much “impedance matching” is required. For example, if the bottom layer does not
provide hardware multicast, then this must be fabricated from point-to-point messages.

Our goals in designing the middle layer were simplicity and generality. We therefore defined our
entire middle layer in terms of only three operations, which we nevertheless believe encapsulate all of
the communication and synchronization mechanisms required by a resource-management system:

XFER-AND-SIGNAL Transfer (PUT) a block of data from local memory to the global memory of a
set of nodes (possibly a single node). Optionally signal a local and/or a remote event upon
completion.

TEST-EVENT Poll a local event to see if it has been signaled. Optionally, block until it is.

1More information on the Quadrics network can be found at http://www.c3.lanl.gov/˜fabrizio/quadrics.html
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STORM functions heartbeat, file transfer, termina-
tion detection

(STORM helper functions) flow control, queue management

STORM mechanisms XFER-AND-SIGNAL, TEST-EVENT,
COMPARE-AND-WRITE

QsNET primitives remote DMA, network condition-
als, event signaling, . . .

Figure 1: STORM implementation structure

COMPARE-AND-WRITE Compare (using ≥, <, =, or ,) a global variable on a set of nodes to a local
value. If the condition is true on all nodes, then (optionally) assign a new value to a—possibly
different—global variable.

We call the preceding mechanisms the STORM mechanisms because they form the cornerstone of
the STORM communication architecture. The following are some important points about the mech-
anisms’ semantics:

1. Global data refers to data at the same virtual address on all nodes. Depending on the imple-
mentation global data may reside in main memory or network-interface memory.

2. XFER-AND-SIGNAL and COMPARE-AND-WRITE are both atomic operations. That is, XFER-AND-
SIGNAL either PUTs data to all nodes in the destination set (which could be a single node) or—in
case of a network error—no nodes. The same condition holds for COMPARE-AND-WRITE when
it writes a value to a global variable. Furthermore, if multiple nodes simultaneously initiate
COMPARE-AND-WRITEs with identical parameters except for the value to write, then, when all
of the COMPARE-AND-WRITEs have completed, all nodes will see the same value in the global
variable. In other words, XFER-AND-SIGNAL and COMPARE-AND-WRITE are sequentially con-
sistent operations [24].

3. Although TEST-EVENT and COMPARE-AND-WRITE are traditional, blocking operations, XFER-
AND-SIGNAL is non-blocking. The only way to check for completion is to TEST-EVENT on a
local event that XFER-AND-SIGNAL signals.

4. The semantics do not dictate whether the STORM mechanisms are implemented by the host
CPU or by a network coprocessor. Nor do they require that TEST-EVENT yield the CPU (although
not yielding the CPU may adversely affect system throughput).

We selected QsNET for our initial implementation because of its raw speed and the wealth of
hardware primitives it provides to the bottom layer of our hierarchy: ordered, reliable multicasts;
network conditionals (which return TRUE if and only if a condition is TRUE on all nodes); and events
that can be waited upon and remotely signaled. In Section 4 we will discuss how the results shown
in this paper generalize to other high-performance networks.
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2.3 Applications of STORM

The dæmons described in Section 2.1 and the mechanisms described in Section 2.2 are sufficiently
flexible to implement a variety of resource-management functions. For the purposes of this paper,
viz. demonstrating STORM’s performance and scalability, we limit ourselves to two particular func-
tions: application launch and gang scheduling.

The traditional way to distribute an application from a fileserver to the cluster nodes is to have
the cluster nodes demand-page the application binary from a shared filesystem, typically NFS [35].
This design, in which potentially many clients are simultaneously accessing a single file on a single
server, is inherently nonscalable. Even worse, file servers are frequently unable to handle extreme
loads and tend to fail with timeout errors. An alternative is to multicast the application binary from
the fileserver to the cluster nodes. While this is the approach that we took in STORM, the challenges
are that the multicast must be implemented in a scalable manner, and must implement global flow
control because the cluster nodes may take different lengths of time to write the file. Our solution
is to use a tree-based multicast (hidden within XFER-AND-SIGNAL’s implementation) and to imple-
ment flow control on file fragments using COMPARE-AND-WRITE which can detect if all nodes have
processed a fragment. To manage filesystem variability we double-buffer (actually, multi-buffer) the
fragments so a node that is slow to write one fragment does not immediately delay the transmission
of subsequent fragments. Finally, we utilize RAM disk-based filesystems so that file accesses proceed
closer to memory speeds rather than disk speeds.

The uniqueness of our gang scheduler is that an efficient implementation of the STORM mecha-
nisms enables global decisions to be made and enacted almost instantaneously. This lets us utilize
much smaller time quanta than are typical in gang schedulers, which, in turn, makes it possible to
run interactive parallel applications—something that is not possible with current gang-scheduling
implementations.

3 Analysis

In this section, we analyze the performance of STORM. In particular, we (1) measure the costs of
launching jobs in STORM; and, (2) test various aspects of the gang scheduler (effect of the timeslice
quantum and node scalability).

We evaluated STORM on a 256-processor Alpha cluster with a Quadrics QsNET network and QM-
400 Elan3 network interface cards (NICs) [31, 32, 33]. At the time of this writing, this cluster is rated
as the world’s 83rd fastest supercomputer [26]. Table 3 describes the cluster in more detail.

For most of the tests described in this section, we ran each experiment multiple times (3–20,
depending upon the experiment) and took the mean of the measured performance. The variance
was fairly small so the choice of mean over other statistics was largely immaterial. Unfortunately,
the application experiments in Section 3.2 had—for as-yet unclear reasons—occasional slow runs,
which biased the mean. As a result, we used the minimum time in that section; taking the median
would have yielded essentially the same result.

3.1 Job Launching Time

In this set of experiments, we study the overhead associated with launching jobs with STORM and
analyze STORM’s scalability with the size of the binary and then number of PEs. We use the approach
taken by Brightwell et al. in their study of job launching on Cplant [7]: we measure the time it takes
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Table 3: Cluster description

Component Feature Type or number

Node Number 64
CPUs/node 4
Memory/node 8 GB
I/O buses/node 2
Operating system Red Hat Linux 7.1

(+ Quadrics mods)
Model AlphaServer ES40

CPU Type Alpha EV68
Speed 833 MHz

I/O bus Type 64-bit PCI
Speed 33 MHz

Network Type QsNET
Ports/switch 128
NIC model QM-400 Elan3

to run a do-nothing program of size 4 MB, 8 MB, or 12 MB that terminates immediately.2

3.1.1 Launch times in STORM

STORM logically divides the job-launching task into two separate operations: The transferring (read-
ing + broadcasting + writing +notifying the MM) of the binary image and the actual execution, which
includes sending a job-launch command, forking the job, waiting for its termination, and reporting
back to the MM. In order to reduce nondeterminism, the MM can issue commands and receive the
notification of events only at the beginning of a timeslice. Therefore, both the binary transfer and the
actual execution will take at least one timeslice. To minimize the MM overhead and expose maximal
protocol performance, in the following job-launching experiments we use a small timeslice of 1 ms.

Figure 2 shows the time needed for each of these two tasks. The figure shows data for 1–256 pro-
cessors and binary sizes of 4 MB, 8 MB, and 12 MB. Launch times are divided into the time it takes to
transfer the binaries and the time needed to execute the (do-nothing) application. Observe that the
send times are proportional to the binary size but grow very slowly with the number of nodes. This
can be explained by the highly scalable algorithms and hardware broadcast that is used for the send
operation. On the other hand, the execution times are quite independent of the binary size but grow
more rapidly with the number of nodes. The reason for this growth is skew caused by local operating
system scheduling effects.

In the largest configuration tested, a 12 MB file can be launched in 110 ms, a remarkably low
latency. In this case, the average transfer time is 96 ms (a protocol bandwidth of 125 MB/s per node,
with an aggregate bandwidth of 7.87 GB/s on 63 nodes3).

2The program contains a static array, which pads the binary image to the desired size.
3The binary transfer does not include the source node.
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Figure 2: Send and execute times for a 4 MB, 8 MB, and 12 MB file on an unloaded system

3.1.2 Launching on a loaded system

To test how a heavily-loaded system affects the launch times of jobs, we created a pair of programs
that artificially load the system in a controlled manner. The first program performs a tight spin-loop,
which introduces CPU contention. The second program repeatedly issues point-to-point messages
between pairs of processes. This introduces network contention. Both programs were run on all 256
processors. The following experiments are the same as those used in Section 3.1.1 but with either the
CPU-consuming program or the network-bandwidth-consuming program simultaneously running
on all nodes of the cluster.

Figure 3 summarizes the difference among the launch times on loaded and unloaded systems. In
this figure, the send and execute times are shown under the three loading scenarios (unloaded, CPU
loaded, and network loaded), but only for the 12 MB file. Note that even in the worst-case scenario,
with a network-loaded system, it still takes only 1.5 seconds to launch a 12 MB file on 256 processors.

3.2 Gang Scheduling Performance

Although STORM currently supports a variety of process scheduling algorithms—with more under
development—we have chosen to focus our evaluation specifically on gang scheduling because it
is one of the most popular coscheduling algorithms. Gang Scheduling (GS) can be defined to be a
scheduling scheme that combines these three features: (1) processes in a job are grouped into gangs;

(2) the processes in each gang execute simultaneously on distinct PEs, using a one-to-one map-
ping; and,

(3) time slicing is used, with all the processes in a gang being preempted and rescheduled at
the same time. Time slicing is obtained using a coordinated multi-context-switch, which occurs at
regular intervals of time, called the timeslot quantum. The following are important issues regarding
gang scheduling [28]:
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Figure 3: Send and execute times for a 12 MB file under various types of load

Effect of timeslice on overhead Smaller timeslices yield better response time at the cost of de-
creased throughput (due to scheduling overhead that cannot be amortized). In Section 3.2.1,
we show that STORM’s scheduling overhead is so low that it can support workstation time
quanta with virtually no performance penalty.

Scalability Because gang scheduling requires global coordination, the cost of enacting a global
decision frequently increases with the number of processors. Section 3.2.2 demonstrates
that STORM exhibits such good scalability that applications running on large clusters can be
coscheduled almost as rapidly as small clusters.

The applications we use for our experiments in this section are a synthetic CPU-intensive job and
SWEEP3D [23], a time-independent, Cartesian-grid, single-group, “discrete coordinates”, determin-
istic, particle-transport code taken from the Accelerated Strategic Computing Initiative (ASCI) work-
load. SWEEP3D represents the core of a widely utilized method of solving the Boltzmann transport
equation. Estimates are that deterministic particle transport accounts for 50–80% of the execution
time of many applications that run on current Department of Energy (DOE) systems [20].

In tests that involve a multiprogramming level (MPL) of more than one, we launch all the jobs at
the same moment (even though this may not be a realistic scenario), to further stress the scheduler.
Results for MPL 2 are normalized by dividing the total runtime of all jobs by 2.

3.2.1 Effect of Time Quantum

As a first experiment, we analyzed the range of usable timeslice values to better understand the lim-
its of STORM’s gang scheduler. Figure 4 shows the average run time of the jobs for various timeslice
values, from 300µs to 8 seconds, running on 32 nodes/64 PEs. The smallest timeslice value that the
scheduler can handle gracefully is ≈ 300µs, below which the NM cannot process the incoming con-
trol messages at the rate they arrive. More importantly, with a timeslice as small as 2 ms, STORM
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can run multiple concurrent instances of an application with virtually no performance degradation
over a single instance of the application.4 This timeslice is an order of magnitude smaller than typ-
ical operating-system (OS) scheduler quanta, and approximately three-to-four orders of magnitude
better than the smallest time quanta that conventional gang schedulers can handle with no perfor-
mance penalties [15]. This allows for good system responsiveness and usage of the parallel system
for interactive jobs. Furthermore, a short quantum allows the implementation of advanced schedul-
ing algorithms that can benefit greatly from short time quanta, such as buffered coscheduling (BCS)
[29, 30], implicit coscheduling (ICS) [2, 3], and periodic boost (PB) [27].
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Figure 4: Effect of time quantum with an MPL of 2, on 32 nodes.

Another interesting feature is that the average runtime of the jobs is practically unchanged by
the choice of time quantum. There is a slight increase of less than one second out of 50 toward
the higher values, which is caused by the fact that events, such as process launch and termination
reporting, only happen at timeslice intervals. Since the scheduler can handle small time quanta with
no performance penalty, we chose the value of 50 ms for the next sets of experiments, which provides
a fairly responsive system.

3.2.2 Node Scalability

An important metric of a resource manager is the scalability with the number of nodes and PEs it
manages. To test this we measured program runtime as a function of the number of nodes. Figure 5
shows the results for running the programs on varying number of nodes in the range 1–64 for MPL
values of 1 and 2. We can observe that there is no increase in runtime or overhead with the increase
in the number of nodes beyond that caused by the job-launch.

4This result is also influenced by the poor memory locality of SWEEP3D, so running multiple processes on the same
processor does not pollute their working sets.
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Figure 5: Effect of node scalability, varying the number of nodes in the range 1–64 for MPL values of 1
and 2.

3.3 Performance and Scalability Analysis

In this section, we analyze all of the components involved in the launching of a job on an unloaded
system, and we present an analytical model showing how STORM’s performance is expected to scale
to cluster configurations containing thousands of processing nodes.

3.3.1 Performance Analysis

The time needed to launch a parallel job can be broken down into the following components:

Read time This is the time taken by the management node to read the application binary from the
file system. The image can be read from a distributed filesystem such as NFS [35], from a local
hard disk, or from a RAM disk.5 In our cluster the NIC can read a file directly from the RAM disk
with an effective bandwidth of 218 MB/s.

Figure 6 shows the bandwidth achieved when the NIC—with assistance from a lightweight pro-
cess on the host—reads a 12 MB file from various types of filesystems into either host- or NIC-
resident buffers. As the figure shows, in the slow cases, namely NFS and local disk, it makes
little difference whether the target buffers reside in main memory or NIC memory. However,
when reading from a (fast) RAM disk, the data clearly show that keeping data buffers in main
memory gives the better performance.

Broadcast time This is the time to broadcast the binary image to all of the compute nodes. If the
file is read via a distributed filesystem like NFS, which supports demand paging, the distribu-
tion time and the file read time are intermixed. However, if a dedicated mechanism is used

5A RAM disk is a segment of RAM that has been configured to simulate a disk filesystem. This provides better perfor-
mance than mechanical media but at increased cost, as DRAM is more expensive than disk media for a given capacity.
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Figure 6: Read bandwidth for a 12 MB binary image from NFS, a local hard disk, and a local RAM disk,
with buffers placed in NIC and main memory

to distribute the file, as in ParPar [22] or STORM, broadcast time can be measured separately
from the other components of the total launch time. The QsNET’s hardware broadcast is both
scalable and extremely fast. On the ES40 Alphaserver, the performance for a main-memory-to-
main-memory broadcast is therefore limited by the PCI I/O bus. Figure 7 shows the bandwidth
delivered by the broadcast on 64 nodes when both source and destination buffers are placed
in NIC (thereby bypassing the PCI bus) and main memory, respectively. As the figure shows,
the hardware broadcast can deliver 312 MB/s when the buffers are in NIC memory but only
175 MB/s when the buffers are placed in main memory.

Write time We are concerned primarily with the overhead component of the write time. It does not
matter much if the file resides in the buffer cache or is flushed to the (RAM) disk. A number
of experiments—for brevity not reported here—show that the read bandwidth is consistently
lower than the write bandwidth. Thus the write bandwidth is not the bottleneck of the file-
transfer protocol.

Launch and execution overhead Some of the time needed to launch a job in STORM is spent allo-
cating resources, waiting for a new time slot in which to launch the job, and possibly waiting
for another time slot in which to run it. In addition, events such as process termination are
collected by the MM at heartbeat intervals only, so a delay of up to 2 heartbeat quanta can be
spent in MM overhead.

Our implementation tries to pipeline the three components of file-transfer overhead—read time,
broadcast time, and write time—by dividing the file transmission into fixed-size chunks and writing
these chunks into a remote queue that contains a given number of slots. In order to optimize the
overall bandwidth of the pipeline, BWlaunch, we need to maximize the bandwidth of each single stage.
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Figure 7: Broadcast bandwidth from NIC- vs. host-resident buffers

BWlaunch is limited by the bandwidth of the slowest stage of the pipeline, which implies that

BWlaunch ≤ min(BWread, BWbroadcast, BWwrite) = min(BWread, BWbroadcast) . (1)

As previously stated, the buffers into which data is read and from which data is broadcast
can reside in either main memory or NIC memory. Figure 6 showed that reading into main
memory is faster, while Figure 7 showed that broadcasting from NIC memory is faster. The
preceding inequality dictates that the better choice is to place the buffers in main memory, as
min(BWread, BWbroadcast) = min(218 MB/s, 175 MB/s) = 175 MB/s when the buffers reside in main
memory, versus min(BWread, BWbroadcast) = min(120 MB/s, 312 MB/s) = 120 MB/s when they reside
in NIC memory.

We empirically determined the optimal chunk size and number of multi-buffering slots
(i.e., receive-queue length) for our cluster based on the data plotted in Figure 8. That figure shows the
total send time for the cross-product of {2, 4, 8, 16} slots and {32, 64, 128, 256, 512, 1024}-kilobyte
chunks. The communication protocol is almost insensitive to the number of slots, and the best per-
formance is obtained with four slots of 512 KB. Increasing the number of slots does not provide any
extra performance because doing so generates more TLB misses in the virtual memory hardware of
the NIC.

Figure 2 on page 7 showed that the transfer time of a 12 MB binary is about 96 ms. Of those,
4 ms are owed to skew caused by OS overhead and the fact that STORM dæmons act only on heart-
beat intervals (1 ms). The remaining 92 ms are determined by a file-transfer-protocol bandwidth of
about 131 MB/s. The gap between the previously calculated upper bound, 175 MB/s, and the ac-
tual value of 131 MB/s, is due to unresponsiveness and serialization within the lightweight process
running on the host, which services TLB misses and performs file accesses on behalf of the NIC.
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Figure 8: Send time as a function of chunk size and slot count

3.3.2 Scalability Analysis

Because all STORM functionality is based on three mechanisms—COMPARE-AND-WRITE, XFER-
AND-SIGNAL, and TEST-EVENT—the scalability of these primitives determines the scalability of
STORM as a whole. In fact TEST-EVENT is a local operation, so scalability is actually determined
only by the remaining two mechanisms.

Scalability of COMPARE-AND-WRITE Figure 9 shows the scalability of QsNET’s hardware barrier
synchronization (on which COMPARE-AND-WRITE is based) on the Terascale Computing System [38]
installed at the Pittsburgh Supercomputing Center, a cluster with 768 nodes/3,072 processors but
otherwise similar to our cluster. We can see that the latency grows by a negligible amount—
about 2 µs—across a 384X increase in the number of nodes. This is a reliable indicator that COMPARE-
AND-WRITE, when implemented with the same hardware mechanism, will scale comparably. In fact,
the flow-through latency of each switch of the QsNET is about 35 ns plus the wire delay, so in a net-
work with 4,096 nodes, each broadcast message must cross at most 11 switches in the worst case,
leading to a network latency of less than a microsecond.

Scalability of XFER-AND-SIGNAL In order to determine the scalability of XFER-AND-SIGNAL to a
large number of nodes, we need to carefully evaluate the communication performance of the hard-
ware broadcast, and consider details of the hardware flow control in the network, which take into
account the wire and switch delays. The QsNET network transmits packets with circuit-switched
flow control. A message is chunked into packets of 320 bytes of data payload, and the packet with
sequence number i can be injected into the network only after the successful reception of the ac-
knowledgment token of packet i − 1. On a broadcast, an acknowledgment is received by the source
only when all of the nodes in the destination set have successfully received the packet. The maxi-
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Figure 9: Barrier synchronization latency as a function of the number of nodes, Terascale Computing
System, Pittsburgh Supercomputing Center

mum transfer unit of the QsNET network is only 320 bytes.6 Hence, in the presence of long wires
and/or many switches, the propagation delay of the acknowledgment token can introduce a bubble
in the communication protocol’s pipeline and therefore a reduction of the asymptotic bandwidth.

The following model is currently used in the procurement of the ASCI Q machine under develop-
ment at Los Alamos National Laboratory, and has been validated on several network configurations,
up to 1,024 nodes, with a prediction error of less than 5%. In order to make the BWbroadcast dependent
on a single parameter—the number of nodes—we compute a conservative estimate of the diameter
of the floor plan of the machine, which approximates the maximum cable length between two nodes.
We assume that the parallel computer and the network are arranged in a square configuration. Con-
sidering that with current technology we can stack between four and six ES40 Alphaserver nodes in
a single rack with a footprint of a square meter, we estimate the floor space required by four nodes to
be 4 m2 (1 m2 for the rack surrounded by 3 m2 of floor space). Conservatively

diameter(nodes) =
⌊√

2× nodes
⌋
, (2)

where the network diameter is expressed in meters. Table 4 describes how the asymptotic band-
width, BWbroadcast, is affected by the network size for networks with up to 4,096 nodes and physical
diameters of up to 100 meters. The worst-case bandwidth for each network size is shown in boldface
in the table.

Scalability of the Binary Transfer Protocol We now consider a model of the launch time for a bi-
nary of 12 MB. The model contains two parts. The first part represents the actual transmission time
and is inversely proportional to the available bandwidth for the given configuration. The second part

6This limitation does not apply to version 4, which allows packets of variable length.
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Table 4: Bandwidth scalability (MB/s)

Cable length (m)

Nodes Processors Stages Switches 10 20 30 40 60 80 100

4 16 1 1 319 319 319 319 284 249 222
16 64 2 3 319 319 309 287 251 224 202
64 256 3 5 312 290 270 254 225 203 185

256 1,024 4 7 273 256 241 227 204 186 170
1,024 4,096 5 9 243 229 217 206 187 171 158
4,096 16,384 6 11 218 207 197 188 172 159 147

is the local execution time of the job, followed by the notification to the MM, and the time wasted
in OS overhead and waiting for the end of the STORM timeslices. Combining these two parts, the
model states that

Tlaunch(nodes) =
12

BWtransfer(nodes)
+ Texec . (3)

We now apply this model to two node configurations. The first one, in which

BWES40
transfer(nodes) = min(131, BWbroadcast(nodes)) , (4)

represents our current cluster, based on ES40 Alphaservers that can deliver at most 131 MB/s over
the I/O bus. The second configuration, in which

BWideal
transfer(nodes) = BWbroadcast(nodes) , (5)

represents an idealized Alphaserver cluster that is limited by the network broadcast bandwidth
(i.e., the I/O bus bandwidth is greater than the network broadcast bandwidth).

Figure 10 shows measured launch times for network configurations up to 64 nodes and estimated
launch times for network configurations up to 16,384 nodes. The model shows that in an ES40-based
Alphaserver the launch time is scalable and only slightly sensitive to the machine size. A 12 MB bi-
nary can be launched in 135 ms on 16,384 nodes. The graph also shows the expected launch times
on an ideal machine in which the I/O bus is not the bottleneck (and in which a lightweight processes
on the host can responsively handle the requests of the NIC). Both models converge with networks
larger than 4,096 nodes because for such configurations they share the same bottleneck—the net-
work broadcast bandwidth.

4 Discussion

Although much attention is paid to the performance of applications running on high-performance
computer systems, the performance of resource-management software has largely been neglected.
Even though resource-management performance is not critical on today’s moderate-sized clusters,
larger clusters and new usage models will require resource-management environments that are
faster, more scalable, and easier to apply to a variety of tasks. With STORM, we are approaching
this challenge proactively by basing all resource-management functionality on a sufficiently small
set of functions that hardware-specific optimizations are feasible to implement—and reimplement
when computers or networks are upgraded or replaced.
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Figure 10: Measured and estimated launch times

Job launching Although job-launching time seldom dominates the total run time of a real appli-
cation, long launching times can be frustrating to programmers who want quick turnaround times
while debugging their applications. This quick turnaround, however, requires efficient, scalable re-
source management. By providing the requisite performance– an order of magnitude faster than the
best reported result [19] on a comparably sized cluster—STORM makes it feasible to perform interac-
tive development on a large-scale cluster. Without a system like STORM, interactive development is
practical only on small clusters, which may be insufficient for exposing race conditions or handling
real data sets.

Process scheduling Although most large cluster installations use batch queues to schedule appli-
cations, gang schedulers have the advantage that jobs do not have to wait minutes—or even hours—
to start running [37]. However, because of the overhead incurred by enacting scheduling decisions,
gang schedulers are usually run with large scheduling quanta—on the order of seconds or even min-
utes [16]—to amortize this overhead. Unfortunately, such long quanta hinder interactive jobs. In
order to open up clusters to a wider breadth of applications and usage models, STORM seeks to min-
imize, rather than amortize, scheduling overhead. STORM can schedule a job on an entire cluster at
about the same speed that a single node OS can schedule a process on an individual computer. As a
result of this work clusters may soon be able to run parallel versions of applications that are currently
limited to sequential workstations.

Collective communication There are two important observations about collective communication
that led to the development of STORM: (1) resource management in a cluster environment is inher-
ently collective, and (2) collective operations can be made fast and efficient by taking advantage of
support provided by the network hardware. We therefore designed the STORM mechanisms to oper-
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ate on sets of nodes. The collective-communication routines—primarily multicast and reduce—can
thereby be implemented as efficiently as possible for a given platform.

Portability of the STORM Mechanisms Table 5 shows the expected performance of the STORM
mechanisms as a function of the number of nodes n on four high performance networks other than
QsNET, namely Gigabit Ethernet, Myrinet, Infiniband and BlueGene/L, based on the best perfor-
mance reported in the literature. The performance of COMPARE-AND-WRITE is expressed as the
latency to check a global condition and to write a single word to all of the destinations. With
XFER-AND-SIGNAL we consider the asymptotic bandwidth delivered to all nodes which in the op-
timal case should scale linearly with the number of nodes. In some of these networks (Ethernet,
Myrinet and Infiniband) the STORM mechanisms need to be emulated through a thin software layer,
while in the other networks there is a one-to-one mapping with existing hardware mechanisms. For
the networks that need emulations we can use logarithmic-time (in the number of nodes) algorithms
that organize the processing nodes in a tree. The broadcast implementations on Myrinet, in order
to be general purpose, need to solve complex problems like buffer management, potential dead-
locks, and congestion-free mapping of the logical tree in the presence of multiple concurrent broad-
casts [5, 8, 9]. These problems are greatly simplified in STORM because these mechanisms are issued
by a single node, so we think that the implementation of COMPARE-AND-WRITE can substantially im-
prove the results. The Infiniband standard includes hardware support for multicast [10], but at the
time of this writing there are neither functional descriptions of how it will be implemented nor ex-
perimental results available in the public domain. BlueGene/L provides a dedicated “global tree”
network that implements one-to-all broadcast and arithmetic reduce operations in the tree itself, so
the STORM mechanisms can be implemented very efficiently without any extra software layer [18].

We argue that in both cases—with or without hardware support—the STORM mechanism repre-
sent an ideal abstract machine that on the one hand can export the raw performance of the network,
and on the other hand can provide a general-purpose basis for designing simple and efficient re-
source managers.

Table 5: Measured/expected performance of the STORM mechanisms

Network COMPARE-AND-WRITE (µs) XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet [36] 46 logn Not available
Myrinet [5, 8, 9] 20 logn ∼ 15n
Infiniband [25] 20 logn Not available
QsNET (see Section 3.3) < 10 > 150n
BlueGene/L [18] < 2 700n

Generality of Mechanisms Currently, STORM supports batch scheduling with and without back-
filling, gang scheduling [28], and implicit coscheduling [2]. However, we believe that STORM’s mech-
anisms are sufficiently general as to be used for an efficient implementation of a variety of schemes.
We initially plan to implement a number of additional coordinated-scheduling algorithms (such as
buffered coscheduling (BCS) [29, 30]) using the STORM mechanisms. This will enable us to perform
a fair comparison of multiple algorithms, and to research how each behaves on a common set of
workloads.

Fault detection is a rather different application from process scheduling but it relies on the same
set of mechanisms. A master process periodically multicasts a heartbeat message (with XFER-AND-
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SIGNAL) and queries the slaves for receipt (with COMPARE-AND-WRITE). If the query returns FALSE,
indicating that a slave missed a heartbeat, the master can gather status information to isolate the
failed slave. Another possible use of the STORM mechanisms is to implement a graphical interface
for cluster monitoring. As before, the master can multicast a request for status information and
gather the results from all of the slaves. In short, we argue that STORM’s mechanisms are sufficiently
general for a variety of uses and sufficiently fast to make their use worthwhile.

5 Related Work

Although powerful hardware solutions for high-performance computing are already available, the
largest challenge in making large-scale clusters usable lies in the system software. In this paper, we
presented our solution, STORM, which currently focuses on increasing the scalability and perfor-
mance of job launching and process scheduling.

5.1 Job launching

Many run-time environments, such as the Portable Batch System (PBS) [4], distribute executable files
to all nodes via a globally mounted filesystem, typically NFS [35]. The advantages of this approach
are its simplicity and portability. However, because many clients are simultaneously accessing a
single file on a single server, the shared-filesystem approach is inherently nonscalable and tends to
lead to launch failures under load because of communication timeouts. A common workaround is
to employ a simple shell script that iteratively starts processes on each node of the cluster. While
this approach reduces contention on the file server it still has severe performance and scalability
limitations on large-scale clusters. In contrast, by implementing the STORM mechanisms in terms
of a tree-based multicast, STORM overhead grows logarithmically, not linearly, in the number of
nodes.

GLUnix [17] is a piece of operating system middleware for clusters of workstations, designed
to provide transparent remote execution, load balancing, coscheduling of parallel jobs, and fault-
detection. While GLUnix launches jobs quickly on small clusters, a substantial performance degra-
dation emerges on larger clusters (> 32 nodes) because reply messages from the slaves collide with
subsequent request messages from the master [17]. STORM, however, can benefit from QsNET’s
network conditionals [31] which utilize a combining tree to reduce network contention and improve
performance and scalability.

The Computational Plant (Cplant) project [34] at Sandia National Laboratories is the closest
project in spirit to ours in that it identifies poor resource-management performance as a problem
worth studying and approaches the problem by replacing a traditionally nonscalable algorithm with
a scalable one. Given the same Myrinet [6]-based platform the STORM mechanisms would likely be
implemented similarly to Cplant’s. However, on a platform such as QsNET, which boasts hardware
collectives, STORM is able to exploit the underlying hardware to improve job-launching performance
by a hundredfold.

BProc [19], the Beowulf Distributed Process Space, takes a fairly different approach to job launch-
ing from STORM and the other works described above. Rather than copy a binary file from a disk on
the master to a disk on each of the slaves and then launching the file from disk, BProc replicates a
running process into each slave’s memory—the equivalent of Unix’s fork() and exec() plus an ef-
ficient migration step. The advantage of BProc’s approach is that no filesystem activity is required
to launch a parallel application once it is loaded into memory on the master. Even though STORM
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utilizes a RAM-disk-based filesystem, the extra costs of reading and writing that filesystem add a sig-
nificant amount of overhead relative to BProc’s remote process spawning. STORM’s advantage over
BProc is that the same mechanisms that STORM uses to transmit executable files can also be used to
transmit data files. BProc has no equivalent mechanism though a system could certainly use BProc
for its single-system-image features and STORM for the underlying communication protocols.

Table 6 presents a selection of job-launching performance results found in the literature, and Ta-
ble 7 extrapolates each of these out to 4,096 nodes. In addition, Figure 11 graphs both the measured
and extrapolated (to 16,384 nodes) job-launching data. While this is admittedly not an apples-to-
apples comparison, the point remains that STORM is so much faster than state-of-the-art resource-
management systems that we expect that the data shown in those tables would be qualitatively the
same in a fairer comparison.

Table 6: A selection of job-launch times found in the literature

Resource manager Job-launch time

rsh 90 seconds to launch a minimal job on 95 nodes [17]
RMS 5.9 seconds to launch a 12 MB job on 64 nodes [14]
GLUnix 1.3 seconds to launch a minimal job on 95 nodes [17]
Cplant 20 seconds to launch a 12 MB job on 1,010 nodes [7]
BProc 2.7 seconds to launch a 12 MB job on 100 nodes [19]
STORM 0.11 seconds to launch a 12 MB job on 64 nodes

Table 7: Extrapolated job-launch times

Resource manager Job-launch time extrapolated to 4,096 nodes

rsh 3,827.10 seconds for 0 MB (t = 0.934n+ 1.266)
RMS 317.67 seconds for 12 MB (t = 0.077n+ 1.092)
GLUnix 49.38 seconds for 0 MB (t = 0.012n+ 0.228)
Cplant 22.73 seconds for 12 MB (t = 1.379 lgn+ 6.177)
BProc 4.88 seconds for 12 MB (t = 0.413 lgn− 0.084)
STORM 0.11 seconds for 12 MB (see Section 3.3)

To clarify the performance improvement provided by STORM, Figure 12 renormalizes the extrap-
olated Cplant [7] and BProc [19] launch-time data to the extrapolated STORM data, which is defined
as 1.0. Cplant and BProc are the two pieces of related work that, like STORM, scale logarithmically,
not linearly, in the number of nodes.

5.2 Process scheduling

Many recent research results show that good job scheduling algorithms can substantially improve
scalability, responsiveness, resource utilization, and usability of large-scale parallel machines [1, 13].
Unfortunately, the body of work developed in the last few years has not yet led to many practical
implementations of such coscheduling algorithms on production clusters. We argue that one of the
main problems is the lack of flexible and efficient run-time systems that can support the implemen-
tation and evaluation of new scheduling algorithms which are needed to convincingly demonstrate
their superiority over today’s entrenched, space-shared schedulers. STORM’s flexibility positions
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STORM as a suitable vessel for in vivo experimentation with alternate scheduling algorithms, so re-
searchers and cluster administrators can determine the best way to manage cluster resources.

Regarding traditional gang-schedulers, the SCore-D scheduler [21] is one of the fastest. By em-
ploying help from the messaging layer, PM [39], SCore-D is able to force communication into a qui-
escent state, save the entire global state of the computation, and restore another application’s global
state with only ∼2% overhead when using a 100 ms time quantum. While this is admirable perfor-
mance, STORM is able to do significantly better. Because the STORM mechanisms can be written to
exploit QsNET’s process-to-process communication (versus PM/Myrinet’s node-to-node communi-
cation), STORM does not need to force the network into a quiescent state before freezing one appli-
cation and thawing another. As a result STORM can gang-schedule applications with no noticeable
overhead when using quanta as small as 2 ms.

Table 8 lists the minimal feasible scheduling quantum supported by STORM and previous job
schedulers. That is, the table does not show the shortest possible quantum, but rather the short-
est quantum that leads to an application slowdown of 2% or less. Again, this is not an entirely fair
comparison but it does indicate that STORM is at least two orders of magnitude better than the best
reported numbers from the literature.

Table 8: A selection of scheduling quanta found in the literature

Resource manager Minimal feasible scheduling quantum

RMS 30,000 milliseconds on 15 nodes (1.8% slowdown) [15]
SCore-D 100 milliseconds on 64 nodes (2% slowdown) [21]
STORM 2 milliseconds on 64 nodes (no observable slowdown)

6 Conclusions

An increasingly important factor in large scale computing is the performance of the resource-
management system. While the purpose of a cluster is to run applications, it is the goal of the
resource manager to ensure that these applications load quickly, make efficient use of cluster re-
sources (CPU, network, etc.), and interact to user input with a small response time. Current resource-
management systems require many seconds to launch a large application. They either batch-
schedule jobs—precluding interactivity—or gang-schedule them with such large quanta as to be
effectively non-interactive. Furthermore, they make poor use of resources because large jobs fre-
quently suffer from internal load imbalance or imperfect overlap of communication and computa-
tion, yet scheduling decisions are too costly to warrant lending unused resources to alternate jobs.

To address these problems we developed STORM, a lightweight, flexible, and scalable envi-
ronment for performing resource management in large-scale clusters. In terms of job launching
STORM is an order of magnitude faster than the best reported results in the literature [19], and in
terms of process scheduling STORM is two orders of magnitude faster than the best reported re-
sults in the literature [21]. The key to STORM’s performance lies in its design methodology. Rather
than implement heartbeat issuance, job launching, process scheduling, fault detection, and other
resource-management routines as separate entities, we designed those functions in terms of a small,
portable set of data-transfer and synchronization mechanisms: XFER-AND-SIGNAL, TEST-EVENT,
and COMPARE-AND-WRITE. If each of these mechanisms is fast and scalable on a given platform,
then STORM as a whole is fast and scalable as well. We validated STORM’s performance on a 256-
processor Alpha cluster interconnected with a QsNET network and demonstrated that STORM per-
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forms well on that cluster, and presented evidence that it should perform comparably well on signif-
icantly larger clusters.

An important conclusion of our work is that it is indeed possible to scale up a cluster without
sacrificing fast job-launching times, machine efficiency, or interactive response time. STORM can
launch parallel jobs on a large-scale cluster almost as fast as a node OS can launch a sequential
application on an individual workstation. In addition, STORM can schedule all of the processes in
a large, parallel job with the same granularity and with almost the same low overhead at which a
sequential OS can schedule a single process.

A second conclusion, drawn from our experience with implementing the STORM mechanisms
on QsNET, is that there are a number of features that a NIC/network can support that greatly help
to improve the performance—and simplify the code—of a resource-management system. The most
useful of these include (1) ordered, reliable communication, (2) programmable NICs, (3) direct NIC
access to host virtual memory, (4) global network conditions, and (5) host process-to-host process
communication. In addition, we found QsNET’s hardware multicasts and remote hardware queues
quite convenient for implementing resource-management functions.

In short, by improving the performance of various resource-management functions by orders of
magnitude, STORM represents an important step towards making large-scale clusters as efficient
and easy to use as a workstation. While STORM is still a research prototype, we foresee STORM or
a tool based on our resource-management research as being the driving force behind making large-
scalable clusters usable and efficient.
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